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Abstract. We analyse the probability distribution functions of the energy and
magnetisation of the two-dimensional Blume–Capel (BC) and Baxter–Wu (BW)
models with spin values S ∈ {1/2,1,3/2} in the presence of a crystal field ∆.
By employing extensive single-spin flip Monte Carlo simulations and a recently
developed method of studying the zeros of the energy probability distribution we
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are able to probe, with a good numerical accuracy, several critical characterist-
ics of the transitions. Additionally, the universal aspects of these transitions are
scrutinised by computing the corresponding probability distribution functions.
The energy distribution has been underutilised in the literature when compared
to that of the magnetisation. Somewhat surprisingly, however, the former appears
to be more robust in characterising the universality class for both models upon
varying the crystal field ∆ than the latter. Finally, our analysis suggests that in
contrast to the BC ferromagnet, the BW model appears to suffer from strong
finite-size effects, especially upon increasing ∆ and S, that obscure the applica-
tion of traditional finite-size scaling approaches.

Keywords: classical Monte Carlo simulations, classical phase transitions,
critical exponents and amplitudes, finite-size scaling
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1. Introduction

The Blume–Capel (BC) model is defined by a spin-1 Ising Hamiltonian with a single-ion
uniaxial crystal-field anisotropy [1, 2]. The fact that it has been very widely studied in
statistical and condensed-matter physics is explained not only by its relative simplicity
and the fundamental theoretical interest arising from the richness of its phase diagram,
but also by a number of different physical realisations of variants of the model, ranging
from multi-component fluids to ternary alloys and 3He–4He mixtures [3]. The zero-field
model is described by the Hamiltonian

H(BC) =−J
∑
⟨ij⟩

σiσj +∆
∑
i

σ2
i , (1)
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where J > 0 is a ferromagnetic exchange interaction and ∆ denotes the crystal-field
coupling. The first sum is over all nearest-neighbours ⟨ij⟩ and the second over all spins
of the lattice. Our numerical work is focused on the square lattice but the model is,
of course, more general. For S =1 the variables σi take on the values σi = 0,±1, but
the model can be extended to general S =1, 3/2, 2, . . ., where one has σi ∈ {−S,−S+
1, . . . ,S− 1,S} — importantly, for integer S, this includes σi = 0, while for half-integer
S it does not.

The BC model on different lattice geometries and for various S values has been
studied extensively over the years. Methodologically, a vast variety of approximation
methods have been used to tackle the problem, such as mean-field theory [1, 2, 4,
5], the renormalisation group [6], finite-size scaling and conformal field theory [7–11],
Monte Carlo simulations [12–18], and series expansions [19] (see also references therein).
Although most of the simulation studies mentioned above have focused on S =1 or
S = 3/2, a number of general features of the phase diagram in the (∆−T ) plane follow
from predictions of mean-field theory. In particular [4, 5]:

(i) For integer values of S a second-order transition line with a decreasing critical
temperature Tc(∆) as ∆ increases meets a first-order transition line at a tricrit-
ical point. This first-order transition line reaches the point of zero temperature
(T =0) at ∆0 = zJ/2, where z is the coordination number of the lattice. From the
point T =0 and ∆ =∆0, S − 1 additional first-order transition lines emerge as the
temperature rises and all end at independent double critical endpoints [4].

(ii) For half-integer S values, the second-order transition line extends to all values of
the crystal field. However, from the point T =0 and ∆ =∆0, S− 1/2 additional
first-order transition lines emerge now as the temperature rises, all ending up at
independent double critical endpoints located below the critical transition line [4].

(iii) The critical lines as well as the double critical endpoints are in the same universality
class as the regular Ising ferromagnet, regardless of the particular value of S.

In addition, for the S =1 square-lattice model the location of the tricritical point is
known with a high numerical accuracy to lie at (∆t,Tt)≈ (1.9660(1),0.6080(1)) [17].

On the other hand, the Baxter–Wu (BW) model was first introduced by Wood and
Griffiths [20] as a system which does not exhibit invariance under a global inversion of
all spins. The Hamiltonian of the model, again augmented by a crystal-field coupling
term, reads

H(BW) =−J
∑
⟨ijk⟩

σiσjσk +∆
∑
i

σ2
i , (2)

where, as in equation (1), J > 0, but now the first sum extends over all elementary
triangles ⟨ijk⟩ of the triangular lattice. In the original model of [20] σi =±1/2 (then
without crystal-field term, i.e. for ∆ = 0), while the spin-1 case has σi = 0,±1. It is
easily seen that the presence of three-spin interactions results in a four-fold degeneracy
of the ground state: there is one ferromagnetic state with all spins up, and three ferri-
magnetic states with down-spins in two sublattices and up-spins in the third. A useful
representation of the sublattice structure can be found in figure 1 of [21].
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An exact solution of the original S = 1/2 BWmodel was provided early on by Baxter
and Wu [22, 23], supplying the critical exponents α= 2/3, ν = 2/3, and γ = 7/6. In
the following, it was also shown that its critical behaviour corresponds to a conformal
field theory with central charge c=1 [24, 25]. Due to the four-fold symmetry of the
ground state it is expected that the critical behaviour of the BW model is in the same
universality class as the q =4 Potts model in two dimensions [26]8. While, therefore,
the critical exponents of the two models are identical, the same does not apply to the
scaling corrections: the 4-state Potts model exhibits logarithmic corrections with the
system size [27], whereas the BW model has power-law corrections with a predicted
correction-to-scaling exponent ω=2 [28]. Other models in the same universality class
also exist. Examples are the square-lattice Ising model with mixed two- and three-spin
interactions [29] as well as a quantum version of the model [30].

Compared to the BC model, the phase diagram of the BW model in the presence of
a crystal field is not so well understood, not only regarding the presence of multicritical
points but also regarding the question of universality along the second-order transition
line. Based on an analogy between the BW model and a diluted four-state Potts model,
Nienhuis et al [31] pointed out that the phase diagram of the S =1 case exhibits a
line of continuous transitions as well as a regime of first-order transitions connected
through a multicritical point. In fact, this corresponds to a tetracritical line joining a
quintuple line (coexistence of five phases) at a pentacritical point (see, for example, [32]
for the terminology relating to multiple and multicritical points). Conversely, Kinzel
et al [33], using a finite-size scaling method, conjectured that a continuous transition
would only occur at ∆→−∞ (the pure BW model). More recent works using Monte
Carlo simulations and conformal invariance have indeed favoured the existence of a
pentacritical point at finite values of ∆ for spin S =1 [10, 34–37]. With this observation
the phase diagram of the S =1 BW model turns out to be rather analogous to that
of the BC model for the same value of spin. Nevertheless, an accurate estimate of
the location of the pentacritical point (pp) is currently not available, complicating the
analysis of numerical data in the area of this putative multicritical point: Note the
discrepancy in the estimates by Dias et al [10], (∆pp,Tpp)≈ (0.8902,1.4), and Jorge
et al [35], (∆pp,Tpp)≈ (1.68288(62),0.98030(10)); see also figure 2 in [38]. Recently,
there have even been arguments in favour of a first-order transition for the spin S = 1/2
model [39] (a mean-field treatment of the S = 1/2 model [40] erroneously predicts a
first-order transition).

Although it has received little attention to date, it is of course also possible to
study the model (2) for spin S > 1. For S = 3/2, to the best of our knowledge, the only
known result stems from a finite-size scaling and conformal invariance study [10] which
suggested that one has, along the second-order line (again, a tetracritical line), and close
to the region where ∆/J ∼ z/2, a short segment of a first-order line with five coexisting
phases, i.e. a quintuple line. To the left of this quintuple line one has a pentacritical
point and to the right a tetracritical endpoint. From this tetracritical endpoint a low-
temperature octuple line (eight coexisting phases) goes down to the point T =0 and
∆/J = 3.25 [10]. Thus, the phase diagram of the BW model with S = 3/2 appears to

8 As pointed out by E. Domany (private communication) this fact was first noticed by R.B. Griffiths.
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differ significantly from that of the corresponding BC model. The universality class
of the second-order transition line has also been studied for both values of the spin,
S =1 and S = 3/2. From renormalisation-group arguments one expects the second-order
transition line to remain in the universality class of the S = 1/2 model and, therefore,
in that of the 4-state Potts model. Indeed, this has been clearly shown to be the case by
comparing critical exponents and other renormalisation-group invariants for both spin
S =1 [10, 21, 38] and S = 3/2 [10] models for a wide range of crystal-field values in
the regime ∆< 0. Nonetheless, for positive values of ∆ and in closer proximity to the
multicritical point, the model develops strong finite-size effects and numerical estimates
of critical quantities show a systematic shift away from the expected results, as has been
recently reported in [38] for the S =1 model. Even for the case with ∆ = 0, carefully
crafted simulations utilising rather large system sizes (L=240, where L defines the
linear dimension of the lattice) were needed for a clear demonstration of universality in
this regime [38]. For ∆> 0, such effects are expected to be even stronger. While it is
of course conceivable that the model transitions to a new universality class for ∆> 0,
we believe that this is rather unlikely given that there is no change in symmetry. In
this respect, the analysis of universal probability distribution functions (PDFs) to be
discussed below is hoped to shed new light on this controversial aspect of the problem.

In the present work we focus on issues relating to universality in both models along
the second-order transition lines in the ∆−T plane, studying them in depth by con-
sidering the numerically accessible PDFs. The majority of our Monte Carlo simulations
are performed via the single spin-flip Metropolis algorithm complemented by histogram
methods and finite-size scaling arguments [41, 42]. In particular, for dedicated values
of the crystal field we locate the critical points and compute the critical exponent ν of
the correlation length by means of a recently developed technique revolving around the
zeros of the energy probability distribution (EPD) [43–45]. We then consider the corres-
ponding critical distributions of the energies and magnetisations that are expected to be
universal and can hence serve as sensitive indicators for determining universality classes.
We remind the reader here that, for the BW model the energy and magnetisation PDFs
have previously been considered for the particular case S = 1/2 [46–49].

The rest of this paper is organised as follows: In section 2 we elaborate on the
necessary theoretical background, namely on the method of EPD zeros and the pathway
to the universal energy and magnetisation probability distributions. Subsequently, in
section 3, we provide an outline of the employed Monte Carlo methods and simulation
protocols. Section 4 contains the presentation and critical discussion of the numerical
results for both BC and BW models. Finally, the paper concludes with a summary and
some additional remarks in section 5.

2. Theoretical background

Our study of the BC and BW models is twofold: an analysis of the zeros of the EPD
yields our main estimate of the transition temperatures and the shift exponent 1/ν.
Motivated by the observations made there, the question of universality is then examined
in detail by a comparison of the universal critical distributions of the energy and mag-
netisation of the models. Here we provide the necessary background for these studies.
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2.1. EPD zeros

Consider a system of statistical mechanics with a discrete energy spectrum with levels
E = En = ε0+nε, n= 0,1, . . . ,N , with ε0 being the ground state energy and ε the level
spacing. We can write the partition function of this system in the following form:

Zβ =
∑
E

g (E)e−βE = e−βε0

N∑
n=0

gne
−βnε = e−βε0

N∑
n=0

gnz
n, (3)

where g(E ) is the number of states with energy E (i.e. the density of states) and
β = 1/(kBT ) with kB being Boltzmann’s constant and T the temperature; in the two
last identities we use the shorthand notation gn = g(En) and z = e−βε.

As noted by Fisher [50], the analytic structure of the partition function and hence the
occurrence of phase transitions can be understood from its factorised form that follows
immediately once one knows all of its zeros. For a finite system Z is a polynomial
of degree N in z and it hence has exactly N complex zeros. Since gn is real and non-
negative, none of the zeros are real, but they come in complex conjugate pairs. However,
as shown by Fisher, for N →∞ at least one root approaches the real axis at zc = e−βcε,
and this event indicates the occurrence of a phase transition at βc = 1/kBTc. For finite
lattices one cannot directly investigate this limit N →∞ but, instead, one usually
studies the dominant zero, i.e. the zero closest to the real axis. Since it is not completely
straightforward to sample partition function zeros in a Monte Carlo study, a slightly
modified approach was proposed in [43]. Inserting unity in the form 1 = e−β0Ee+β0E into
equation (3), where β0 is some reference inverse temperature, we immediately obtain
the expression

Zβ = e−∆βε0

N∑
n=0

hβ0 (n)x
n, (4)

where ∆β = β−β0, hβ0(n) = gne
−β0E, and x= e−∆βε. In this way, the set {xi} of zeros

of the above equation are just the renormalised set of Fisher zeros {zi} resulting
from equation (3), since x= e−βε/e−β0ε = z/e−β0ε. We note that hβ0(n) = gne

−β0E is the
(unnormalised) EPD at inverse temperature β0. Hence it can be easily estimated numer-
ically from an energy histogram sampled at β0. Computing the zeros of an estimate of
equation (4) with hβ0(n) replaced by the histogram ĥβ0(n) hence provides an easy path-
way towards an analysis of some partition function zeros. Since the tails of the EPD are
less populated, a cutoff δ is introduced by neglecting all coefficients hβ0(n)≤ δ, reducing
significantly the degree of the polynomial for larger lattices. In order to avoid having to
cope with the adverse numerical implications of very large polynomial coefficients, one

can further normalise the histogram by considering hβ0(n)/h
(max)
β0

, where h
(max)
β0

is the
maximum value of the histogram.

Now, when β0 = βc, the zero corresponding to the phase transition for the infinite
system appears at xc = (1,0). For a finite lattice of size L this implies that the dominant
zero xL

c should be close to the point (1, 0) if we choose β0 ≈ βL
c . This observation suggests

an iterative approach for locating βL
c by considering the location of the dominant zero
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xL
c for a given choice of β0 [43–45]. One starts with an initial guess for βL

c denoted by

βj=0
0 and iterates through the following steps:9

(1) Simulate the system at β = βj
0 and construct a histogram ĥβj

0
.

(2) Determine all the zeros xj
i , i = 1, . . . ,N of the polynomial

N∑
n=0

ĥβj
0
(n)xn.

(3) Find the dominant zero xj
c. Then:

(a) if xj
c is (to a prescribed level of accuracy) close enough to the point (1, 0), take

xL
c = xj

c and stop;

(b) else, take

βj+1
0 =−ε−1 ln

[
Re

(
xj
c

)]
+βj

0 (5)

and repeat at step (1).

In the above equation (5), Re(xj
c) denotes the real part of the complex root xj

c.

At the end of this process, not only do we have xL
c but also βj

0 = βL
0 ≈ βL

c , the desired
pseudocritical inverse temperature, corresponding to the temperature TL

c of the most
relevant zero for the lattice size L. We can then make use of the established finite-size
scaling form for pseudocritical inverse temperatures,

TL
c = Tc+ bL−1/ν

(
1+ b ′L−ω

)
, (6)

where Tc is the critical temperature of the infinite system, b and b ′ are non-universal
constants, ν the critical exponent of the correlation length, and ω the correction-to-
scaling exponent. An analogous behaviour is expected for the scaling of the dominant
zero [43]

xL
c = xc+ bL−1/ν

(
1+ b ′L−ω

)
. (7)

Thus, the real part approaches Re(xL
c )→ 1, while the imaginary part goes to zero as [43]

Im
(
xL
c

)
∼ L−1/ν

(
1+ b ′L−ω

)
. (8)

Although in the above scaling equations (7) and (8) we have included a correction-
to-scaling term proportional to L−ω, it turns out that in our numerical data these
corrections are very small and thus the extra term was not included in those fits.

2.2. Critical energy and magnetisation PDFs

Universality classes are most often characterised by the values of critical exponents,
sometimes also by comparison of universal amplitude ratios. Much less attention is
being paid to universal distribution functions of the extensive thermodynamic variables

9 We note that this approach is not expected to yield reliable estimates of all or even the subleading zeros.
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such as the energy and magnetisation [51, 52], although they naturally contain much
more information than the single numbers of exponents and amplitude ratios. Here,
we find that such distributions are quite useful as they indeed provide a fingerprint
of the underlying universality class. Most of the first studies on the topic involved the
computation of the magnetisation (or order-parameter) PDFs in Ising-like models [13,
51, 53–57], due to the main interest being primarily the location of first-order transition
lines and multicritical points. Here, we will also consider the energy PDF, and find it
rather more useful for comparing models than the magnetisation distributions. In the
present section, we will describe the formalism for both cases in a unified language.

According to fundamental scaling arguments, the general form of the critical PDF
of the density x=X/N of an extensive thermodynamic variable X in a system of edge
length L and number of sites N = Ld is expected to take the form [51, 52]

PL (x) = aLuP * [bLv (x−x0)] = aLuP * [bLvχ] , (9)

where x0 =X0/N = ⟨X⟩/N is the expectation value of x, u and v are critical exponents,
and a and b are non-universal metric constants. Importantly, here P * is the universal
scaling function related to the PDF of x. Normalisation of PL(x) as a probability distri-
bution implies that u = v and one can assume without loss of generality that a = b [51].
It is often convenient to consider directly the shifted scaling variable χ = x−x0 as we
shall do below.

In a numerical setting, we can generate an estimate of PL by constructing a histogram
P̂L of values X from a time series Xt, t= 1, . . . ,T of length T of measurements of X taken
at (or very close to) the critical temperature. We assume here that X has a discrete
spectrum with X ∈ ΩX = {Xmin,Xmin+∆X,Xmin+2∆X, . . . ,Xmax} (for a continuous
spectrum one also naturally arrives at this form through some binning procedure).
Formally, the normalised histogram is then given by

P̂L (X) =
1

T

T∑
t=1

δXt,X , X ∈ ΩX . (10)

By construction, one has
∑

X∈ΩX
P̂L(X) = 1 and we can use the empirical histogram to

estimate X 0

X̂0 =
1

T

T∑
t=1

Xi =
∑
X∈ΩX

P̂L (X)X.

Since X is extensive, the range Xmax−Xmin grows proportional to N, while we can
assume that the spacing ∆X is independent of N. Then, the possible values for the
density x=X/N become quasi continuous for large N since we can write

1 =
∑
X∈ΩX

P̂L (X) =
Xmax∑

X=Xmin

P̂L (X)

∆X/ωX

∆X

ωX

N≫1−→
ˆ xmax

xmin

P̂L (Nx)

∆X/ωX
dx, (11)

where ωX = |ΩX | denotes the number of discrete values of the variable X ; clearly, for
N ≫ 1 one finds that dx=∆X/ωX ≪ 1 and x approaches a continuous variable. We
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hence get an estimate of the universal scaling function of equation (9),

P̃L (x) =
P̂L (Nx)

∆X/ωX
. (12)

Normalisation implies thatˆ
PL (x)dx=

ˆ
bLuP * (bLuχ)dχ =

ˆ
P *

(
χ*

)
dχ* = 1,

where χ* ≡ bLuχ. The corresponding distribution variances are

σ2 =

ˆ
(x−x0)

2PL (x)dx=

ˆ
bLuχ2P * (bLuχ)dχ

= b−2L−2u

ˆ
χ*2P *

(
χ*

)
dχ* = b−2L−2uσ*2. (13)

We can use the metric factors b to ensure that the universal PDF P * has unit variance,
i.e. σ* = 1. In that case, the basic relation (9) implies that

P * (χ/σ) = σPL (x) . (14)

We can then use the histogram (12) to estimate the universal PDF P *. The conveni-
ence of the above procedure is now evident: from standard Monte Carlo simulations
we are able to estimate PL(x) as well as the standard deviation σ and, without the
need for knowing the exponent u, we can easily estimate the universal PDF P * from
equation (14).

While this formalism is fairly general, the most relevant cases clearly are x =m for
the magnetisation (or another order parameter such as the sub-lattice magnetisation
m j ) and x = e for the internal energy. For x =m it has been shown in the original work
[51] that u= β/ν, while for x = e one finds u= (1−α)/ν [52]. Here, α refers to the
specific-heat exponent, while β is the exponent of the magnetisation, and ν denotes the
correlation-length exponent. Note that the exponent u is just the scaling dimension of
the given operator. We also note that for the case of x = e, equation (10) is identical
to the numerical estimate of the probability density function used for the EPD zeros
approach discussed above. In addition to the data collected in that context, we found
it worthwhile to conduct a single, long simulation at the best available estimate of the
critical temperature, which is the basis for the results presented below. Finally, also
histogram reweighting techniques may be used to improve statistics [58]. It is easily
possible to work out the elements of ΩX . For the BW model at zero crystal field, for
example, the energies lie in the symmetric range −2L2S3 ⩽ E ⩽ 2L2S3 with spacing
∆E = 1 for both S =1 and S = 3/2.

3. Monte Carlo simulations: setup and parameters

The Monte Carlo simulations reported in this paper were carried out using the single
spin-flip Metropolis algorithm on square (BC model) and triangular (BWmodel) lattices
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of linear size L with periodic boundary conditions. Simulations were conducted for
several values of the crystal field in the range −2⩽∆⩽ 1 in order to carefully investigate
the question of universality in the two models. Owing to the uncertainty in the precise
location of the pentacritical point as well as the observed strong corrections to finite-size
scaling for the BW model (see below), our simulations only reached up to ∆ = 0.5 for
this case. In all simulations we set J =1 and kB = 1, so that the crystal-field coupling
and the temperature are measured in units of J and J/kB, respectively. Note that for the
BW model in order to properly accommodate the three different ferrimagnetic phases
at low temperatures, all values of L were selected as multiples of three. Further, the
number of sweeps or Monte Carlo steps per spin (MCS) used for thermalisation and for
computing average values of the thermodynamic quantities were chosen after several
test runs designed to estimate the requirements for different system sizes L as well as
different values of the spin S and the crystal field ∆.

For the analysis of the EPD zeros, we considered lattices in the range 16⩽ L⩽ 128
for the BC model and 18⩽ L⩽ 120 for the BW model, respectively. During thermalisa-
tion the first Ntherm = 105 (resp. 3× 105) MCS were discarded for L⩽ 45 (resp. L> 45).
The histograms were then obtained with a total of NMCS = 108 MCS and the corres-
ponding complex zeros were computed through the GNU Scientific Library [59], which
uses balanced-QR reduction of the companion matrix. The criterion to halt the itera-
tion process of getting the pseudocritical temperatures TL

c was considered to be satisfied

when T j+1
0 −T j

0 ⩽ η, with η = 10−4. Equivalent results were obtained when considering
|Re(xL

c )− 1|⩽ η.
For both models, after obtaining the critical temperature, estimates of universal

PDFs of the energy and magnetisation were usually computed using the larger system
sizes with additional simulations comprising NMCS = 12× 108 MCS after thermalisation.
When necessary, single histogram reweighing techniques were used to obtain the PDFs
close to the estimated critical temperatures [58].

4. Results

4.1. The BC model

We first applied the approaches presented above in sections 2 and 3 to the BC model that
is better understood than the BW model, thus creating a reference for the simulations
of the latter, but also to gauge the reliability and accuracy of the methods.

In figure 1 we show the distribution of the EPD zeros in the complex plane for the
BC model at ∆ = 0 and at the pseudo-critical temperatures TL

c . Results for both spins,
i.e. S =1 and S = 3/2, are shown. In particular, the right panels present a magnified
view around the dominant root xL

c , illustrating that indeed the imaginary part Im(xL
c )

is close to zero, while the real part Re(xL
c ) is close to one. For each value of the spin S,

the same pattern of the distribution of the EPD zeros is obtained, not only for different
system sizes (with the number of roots rapidly increasing with L) but also for different
values of ∆.

The finite-size scaling analysis of the imaginary part Im(xL
c ) is depicted in figure 2 for

the spin values S =1 and S = 3/2 as well as for the full spectrum of ∆ values considered
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Figure 1. Distribution of the EPD zeros in the complex plane for the Blume–Capel
model at ∆ = 0 and at TL

c . Results for S =1 (upper panels) with L=80 and S = 3/2
(lower panels) with L=100 are shown. The panels on the right show in more detail
the regions closer to the dominant zero. The diamond symbols mark the dominant
root and the open squares are the reference point (1, 0), as indicated in both panels.

in this work. As a reference, we also include results for the Ising model. All lines are
linear fits to equation (8) (excluding the correction term) with the magnitude of the
slope providing 1/ν. The corresponding fit results are listed in table 1. It is interesting to
note that all fitted lines are parallel to each other and to that of the Ising data, leading to
the conclusion of a shared critical exponent ν=1 corresponding to the Ising universality
class. This is verified to a good numerical accuracy by the extrapolated values reported
in table 1 for both values S of the spin, as we move along the second-order transition
line (always for ∆<∆t ≈ 1.966).

At this point we can use equation (6) to estimate the critical temperatures Tc.
Figure 3 presents the scaling behaviour of the pseudocritical temperatures TL

c of the
S =1 and S = 3/2 BC model at two values of the crystal field, as indicated. The numer-
ical data are plotted against L−1/ν , with the ratio 1/ν taken from table 1. Here, there is
no significant change in the fits if we consider L−(1/ν)±σ(1/ν), where σ(1/ν) is the corres-
ponding error in the critical exponent estimate. In each panel we show three separate
fits: two linear fits (assuming b ′ = 0 in equation (6)) with L> 24 (red line) and L> 30
(blue line), and an additional fit taking into account corrections to scaling, by fixing the
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Figure 2. Finite-size scaling behaviour of the imaginary part Im(xL
c ) of the dom-

inant EPD zero for the Blume–Capel model with spin S =1 (squares) and S = 3/2
(triangles) at several values of the crystal-field coupling ∆. For comparison, data
for the spin S = 1/2 case, i.e. the Ising ferromagnet, are also shown (circles). Note
the doubly-logarithmic scale of the axes.

exponent ω to the value 7/4 found for magnetic quantities in the Ising model10 (black
line). Although for the case of ∆> 0 (∆ = 1 in this instance) the numerical data start
to very slightly deviate from a straight line, all results for Tc are quite comparable and
their average is shown in table 1.

We note that, for technical reasons, we did not systematically study the statistical
fluctuations in the location of the leading zero11. Instead, we merely estimate the stat-
istical uncertainty in the estimates for 1/ν and Tc from the error estimates of fits of
the functional forms (6), (7) and (8) to the data. Note that in table 1 we also include
previous results from series expansion [19] and conformal invariance [9, 10], clearly sug-
gesting an overall acceptable agreement regarding the critical temperatures of the BC
model along the second-order transition line.

While there is consistency in the value of 1/ν along the transition line, cf the data
in table 1, further information is required to uniquely characterise a universality class.
Here, we turn our attention to the universal PDFs of the main thermodynamic observ-
ables, in particular the energy and magnetisation, to achieve a fuller characterisation.
In figure 4 we show our estimates of the energy and magnetisation PDFs for the BC
model with spins S =1 and S = 3/2 and crystal fields ∆ = 0.5 and ∆ = 1, respectively.

10 See, for example, the discussion in the supplementary material of [60]. We note, however, that other values of ω have also
been reported for certain quantities in the 2D Ising model, most notably ω = 4/3 and ω=2, and in some cases also the analytic
corrections might be dominant. In our case, the observed corrections are so weak (compared to the statistical accuracy of our data)
that numerically we hardly see a difference between these choices.
11 The results of [61] for the spin-1/2 Ising model showed that, although the overall map of zeros fluctuates substantially as a result
of noise in the histogram, the location of the dominant zero is relatively stable.
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Figure 3. Finite-size scaling behaviour of the pseudocritical temperatures TL
c as

extracted from the EPD zeros for the S =1 (upper panels) and S = 3/2 (lower
panels) Blume–Capel models at two values of the crystal field, ∆ = 0 (left panels)
and ∆ = 1 (right panels). The lines show fits of the functional form (6) to the data
(see main text for details).

These distributions were computed for the lattice size L=128 at the corresponding
pseudocritical temperatures of the system. We underline that on the scale of figure 4,
the results for L=80 and L=100 (not shown) fall on top of those for L=128, in par-
ticular for the energy distribution. For reference, also the PDFs for the spin S = 1/2
Ising ferromagnet are included in both panels of figure 4.

Without doubt, the energy PDFs shown in figure 4 constitute a strong indication
of Ising universality. Although the same occurs for the magnetisation distribution func-
tions, some variations can be observed around the two symmetric peaks. These might
be due to increased fluctuations implied by critical slowing down in the Metropolis
(single-spin flip) dynamics. This problem could certainly be alleviated by using hybrid
algorithms such as single-spin flips combined with Wolff cluster updates, a practice that
was shown to effectively improve the simulations in the BC model [62, 63]. However, we
decided to implement in this work only the Metropolis algorithm for reasons of consist-
ency with the parallel study of the BW model, for which an effective hybrid procedure
is harder to establish.

In summary, with the help of only the Metropolis algorithm and investing a rather
moderate computational effort, the energy PDF proves to be a robust tool in ascer-
taining the critical behaviour and universality of the BC model. This suggests that
the energy PDF could be an underestimated device in numerical studies of critical
phenomena.

https://doi.org/10.1088/1742-5468/ad784e 13

https://doi.org/10.1088/1742-5468/ad784e


Universal energy and magnetisation distributions in the Blume-Capel and Baxter-Wu models

J.S
tat.

M
ech.(2024)

103204Figure 4. Universal PDFs of the shifted energy density ε= e− e0 (upper panel) and
the magnetisation density m (lower panel) in the Blume–Capel model for a system
of linear size L=128. Several distributions are illustrated for spin S =1 (squares)
and S = 3/2 (triangles) and two values of the crystal field, namely ∆ = 0.5 and
∆ = 1. For comparison, the reference distributions of the Ising ferromagnet (circles)
are also sketched. Here, σE and σM denote the standard deviations of the energy
and magnetisation histograms, respectively, see section 2.2 for details.

4.2. The BW model

In a previous work [38], we already studied the S =1 BW model with the help of the
EPD zeros method, and we will use some of the previously obtained numerical estimates
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Table 1. Summary of the main results obtained in the current work from the
recently developed EPD zeros method [43–45] for the two-dimensional Blume–
Capel and Baxter–Wu models. For comparison the third column of the table

includes some earlier reference estimates of critical temperatures (T
(ref)
c ) obtained

from series expansion [19] and conformal invariance [9, 10]. The result T
(ref)
c =

1.5300 for the S =1 Baxter–Wu model at ∆ = 0.5 has been privately communic-
ated to us by the authors of [10]. We note the expected values 1/ν = 1 and 1.5 for
the Blume–Capel and Baxter–Wu models, respectively.

∆ Tc T
(ref)
c 1/ν

Blume–Capel 1

S =1

−2 2.0013(3) 1.001(2)
0 1.6938(1) 1.69 378(4) [19] 1.001(2)
0.5 1.5662(1) 1.5664(1) [19] 1.002(2)
1 1.3977(1) 1.3986(1) [19] 1.005(2)

S = 3/2

−2 4.1187(2) 1.002(2)
0 3.2884(6) 3.287(2) [9] 1.004(2)
0.5 2.9727(3) 2.972(3) [9] 1.003(2)
1 2.5740(3) 1.004(2)

Baxter–Wu 1.5

S =1

−2 1.9796(4) 1.503(1)
−1 1.8502(3) 1.8503 [10] 1.515(2)
0 1.6606(5) 1.6606 [10] 1.541(2)
0.5 1.5301(3) 1.5300 1.605(3)

S = 3/2

−2 5.6645(5) 1.523(2)
−1 5.2576(2) 5.2661 [10] 1.543(1)
0 4.7057(6) 1.607(2)
0.5 4.3839(5) 1.667(4)

to facilitate the discussion. A summary of results for both the S =1 and S = 3/2 models
is shown in table 1, together with previous estimates from conformal invariance [10].

When we apply the EPD zeros method to the S = 3/2 model, the distribution of
zeros in the complex plane and the corresponding scaling plots of Im(xL

c ) and TL
c (for

the latter using now the putative correction term with ω=2) all appear very similar
to those for the S =1 case (not shown), with the exception of the asymptotic values
of non-universal quantities such as the transition temperatures. Comparing to previous
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Figure 5. Finite-size scaling behaviour of the imaginary part Im(xL
c ) for the

Baxter–Wu model with spin S =1 (squares) and S = 3/2 (triangles) at several
values of the crystal-field coupling ∆. The circles in this case refer to the spin
S = 1/2 model.

results, we find that the critical-temperature estimates from the EPD zeros method are
comparable to those from conformal invariance within error bars for the S =1 model,
while the agreement for S = 3/2 is a bit less convincing, cf the data collected in table 1.
Increasing the number of spin states seems to require longer simulations12.

On the other hand, by renormalisation-group arguments the critical exponent ν is
expected to maintain its original value of 2/3 (or 1/ν = 3/2 in the notation used in
the present work), independent of S and ∆, as long as we move along the second-
order transition line of the phase boundary. A typical illustration that combines data
for all spin values S studied and various values of ∆ is given in figure 5, which is the
analogue of figure 2 for the BW model. For comparison, results for the spin S = 1/2
model are also shown. In contrast to figure 2, the fits for the BW model appear to show
slight deviations from the straight line as both S and ∆ increase and, in particular,
for ∆≳ 0, which is also evident from the actual extrapolated 1/ν values recorded in
table 1. A similar behaviour was also observed for the S =1 model at ∆ = 0 in [38],
where it was attributed to the presence of strong finite-size effects due to the proximity
to the putative multicritical point. Preliminary simulations of hybrid type consisting of
suitable cluster updates [64, 65] with the heat-bath algorithm [66, 67] showed that the
critical exponent ν approaches the expected result when considering very large system
sizes [38]. However, we should note that for negatives values of ∆ a good agreement
with the S = 1/2 model is achieved, both for S =1 and for S = 3/2, as is evident from
table 1.

12 Since the transition temperatures for this model were obtained considering η = 10−4, errors have been estimated by (2− 3)σf ,
with σf ∼ 10−5 the variance of the corresponding fits.
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In order to resolve this conundrum, it is worthwhile to explore in detail the universal
PDFs of the energy and magnetisation of the BW model, a task involving considerably
less computational effort than the high-precision studies of the critical exponents. To
set the stage, we first consider these distributions for the case S = 1/2, where there is
some previous work for the energy [47, 49] and total magnetisation [46, 48]. Here, we
provide more accurate data for larger systems, and we also include an analysis based
on the sublattice magnetisations [21, 38].

The corresponding PDFs of the pure spin S = 1/2 BWmodel, computed at the exact
critical temperature Tc = 2.26918 · · · , are shown in figure 6 for several lattice sizes. On
the scale of the graph, the energy universal PDF is achieved for L⩾ 60, while for the
magnetisation, a universal PDF is achieved only for the larger lattices L⩾ 120. While
the total magnetisation has a higher peak for a negative value of m (reflecting the fact
that two out of the three sublattices have negative spin orientation), the sublattice
magnetisations do show a symmetric distribution13.

It is worth noting that for a temperature just above the critical one, T = 2.27055>
Tc = 2.26918 · · · and system size L=150, the right shoulder in the energy PDF shown
in the upper panel of figure 6 evolves into a second peak of the same height as the
left one (not shown). This double-peaked function in the energy distribution has been
previously interpreted as a sign of a first-order transition in the model [39]. Using
histogram reweighting [58] we show in figure 7 for the system sizes studied the energy
PDFs computed at the (system-size dependent) temperature where the two peaks are of
equal height. There is a clear agreement with the previous results of figure 6, as also here
we document graphically the convergence towards a unique density function for L⩾ 60.
This establishes the equal-height temperature as a new pseudocritical temperature of
the system. Fitting the functional form of equation (6) to this sequence of pseudocritical
points one arrives at the estimate Tc = 2.2692(1),14 in excellent agreement with the exact
result.

Reviewing this first part of results for the spin-1/2 BW model, we should emphasise
that figure 7 represents an extension to the energy PDF of a method originally proposed
for the magnetisation [68] in determining the critical temperature when one does not
know, a priori, the universal function. Despite the presence of the double peaks, the
analysis in figure 7 also confirms the expected second-order character of the transition,
corroborating recent results for the spin-1 model based on a scaling analysis of the
surface tension and latent heat at ∆⩽ 0.5 [21, 38].

We now turn to the PDFs of the spin-1 and spin-3/2 BW models. These particular
PDFs have been computed with much longer simulation times15 at the estimated critical
temperatures as listed in table 1; these PDFs are shown in figure 8. For comparison,

13 As a comment we note that in this particular case of the S = 1/2 Baxter-Wu model we extended our simulations to the size
L=180. However, we observed that while the PDFs for the energy and total magnetisation are almost identical to those of L=150,
the sublattice magnetisations have peaks of slightly different heights that alternate depending on the number of Monte Carlo steps
(typical of the single spin-flip nature of the Metropolis algorithm). It appears possible that with increasing L, the system spends
more time in one of the sublattice phases.
14 The result Tc = 2.2692(1) comes as an average over the three complementary fitting estimations.
15 Except for the S = 1/2 and S =1 models at ∆ =−2 where we used as a reference the system with linear size L=150, for all the
other cases we restricted our analysis to the size L=120. This is due to the fact that upon increasing S and ∆ simultaneously the
necessary computational time to obtain a reasonable distribution becomes prohibitive.
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Figure 6. Energy and magnetisation PDFs of the spin-1/2 Baxter–Wu model at the
exact critical temperature for different lattice sizes L, as indicated. In particular: the
upper panel illustrates the energy PDF (P *

e ), the middle panel that of the average
over the three sublattice magnetisations (P *

mj
with j = 1,2,3), and the lower panel

that of the total magnetisation (P *
m).
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Figure 7. Energy PDFs of the spin-1/2 Baxter–Wu model for the same sequence
of lattice sizes as in figure 6. The PDFs were computed at the temperatures where
the distributions show two peaks of equal height. The inset shows the finite-size
scaling behaviour of the equal-height pseudocritical temperatures TL

c , where the
different coloured lines correspond to the three fits corresponding to figure 3 that
were outlined in the previous section.

we also show the PDFs of the spin-1/2 model. While for ∆≲ 0 and smaller S the
PDFs of different models collapse onto the same universal functions, we observe some
deviations in particular for S = 3/2 and ∆ = 0.5. In order to gauge these, we show in
figure 9 the system-size dependence of the observed PDFs, which is seen to be much
more pronounced here than for the pure S = 1/2 BW model, cf figure 6. Nevertheless,
it appears that for the largest system sizes considered, the PDFs have already stabilised
to a certain degree, but this impression might be deceptive.

Inspecting the results of figure 8, we hence come to the following conclusions: (i) For
∆ =−2 and both values of the spin, all three PDFs manifest a reasonable agreement
with the universal ones coming from the spin-1/2 case. We note that this trend is more
apparent for the magnetisation PDFs and becomes even more definite for crystal-field
values ∆<−2. (ii) For positive values of ∆ (as shown in the insets of figure 8) the
situation appears to be much more involved. For example, at ∆ = 0.5 the distributions
of both spin S =1 and S = 3/2 models appear to show deviations from that observed
for the spin-1/2 model. In fact, the energy PDF starts to develop a secondary peak,
where initially one has a shoulder and the sublattice magnetisation PDF presents an
additional peak at zero magnetisation (mj = 0). We attribute these discrepancies among
the PDFs, which appear to become more pronounced upon increasing the crystal field
∆ in the direction of the pentacritical point and the spin S value, to the same finite-size
effects that obscured the analysis of the EPD zeros method in the previous section.
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Figure 8. Energy and magnetisation PDFs of the Baxter–Wu model with S =1
(squares) and S = 3/2 (triangles) at two values of the crystal field, namely ∆ =
−2 (main panels) and ∆ = 0.5 (insets: green symbols for S =1 and blue symbols
for S = 3/2, respectively). The upper panel illustrates the energy PDF (P *

e ), the
middle panel that of the average over the three sublattice magnetisations (P *

mj
with

j = 1,2,3), and the lower panel that of the total magnetisation (P *
m). The universal

PDFs of the spin-1/2 model (circles) are also plotted for reference.
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Figure 9. Energy and magnetisation PDFs of the Baxter–Wu model with S = 3/2
and ∆ = 0.5 for several values of the lattice size L. The upper panel illustrates
the energy PDF (P *

e ), the middle panel that of the average over the three sub-
lattice magnetisations (P *

mj
with j = 1,2,3), and the lower panel that of the total

magnetisation (P *
m).
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5. Concluding remarks

In the present paper we analysed several critical aspects of the two-dimensional BC and
BW models in the presence of a crystal-field coupling ∆ and for various values of the
spin S. We benefited from a recently proposed method utilising the zeros of the EPD as
well as from the physical information encoded in the universal PDFs of the energy and
magnetisation. Numerically, we employed extensive Monte Carlo simulations based on
the Metropolis algorithm in combination with single-histogram techniques.

For the BC ferromagnet, the reported original results are in excellent agreement
with the expected behaviour. Namely, our estimates for the critical exponent ν of the
correlation length are fully consistent with the Ising universality class, a result which is
further reinforced by the considered probability density functions of both the energy and
magnetisation. Additionally, the critical temperatures Tc(∆) obtained from standard
finite-size scaling are comparable to some of the best known estimates from the recent
literature. Similar conclusions in general apply also for the BW model, where both the
computation of the critical exponent ν but also the universal shape of the probability
density functions suggest that all studied spin-S models share the universality class of
the 4-state Potts model. We remind the reader that this in principle anticipated from
symmetry arguments [26] and is also in agreement with recent high-accuracy numerical
results for the spin-1 model [21]. Still, an intriguing observation emerging from our
simulations is the slight deviation of the exponent ν from the expected 2/3 result as
well as various mismatches in the probability density functions upon increasing ∆ and S,
most strongly visible for S = 3/2 and ∆ = 0.5. Apparently, the problem becomes much
more involved for positive values of ∆, requiring simulations of much larger system sizes,
a task which goes beyond the scope of the present work. In this regime, there appear
to be strong finite-size effects that were also observed in previous studies of the model
[21, 38].

One possible explanation for these deviations arises from the concept of field mix-
ing [54]. In studying first-order phase transitions close to a second-order line, with an
intervening multicritical point, a mixing of scaling fields (resp. a demixing) turns out
to be of paramount importance for identifying a suitable direction that minimises cor-
rections to scaling. As the crystal field increases, the second-order transition line gets
steeper, bringing about a higher degree of asymmetry in the thermodynamic fields. In
this respect, the process of a mixing of such thermodynamic fields may also be relevant
along the tetracritical line. Hence, taking such effects into account might be crucial
in order to accurately obtain the universal PDFs. This aspect is a worthy subject for
future investigations.
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