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Abstract: We study the zeros of the partition function in the complex temperature plane (Fisher zeros)
and in the complex external field plane (Lee–Yang zeros) of a frustrated Ising model with competing
nearest-neighbor (J1 > 0) and next-nearest-neighbor (J2 < 0) interactions on the honeycomb lattice.
We consider the finite-size scaling (FSS) of the leading Fisher and Lee–Yang zeros as determined
from a cumulant method and compare it to a traditional scaling analysis based on the logarithmic
derivative of the magnetization ∂ ln⟨|M|⟩/∂β and the magnetic susceptibility χ. While for this model
both FSS approaches are subject to strong corrections to scaling induced by the frustration, their
behavior is rather different, in particular as the ratio R = J2/J1 is varied. As a consequence, an
analysis of the scaling of partition function zeros turns out to be a useful complement to a more
traditional FSS analysis. For the cumulant method, we also study the convergence as a function
of cumulant order, providing suggestions for practical implementations. The scaling of the zeros
convincingly shows that the system remains in the Ising universality class for R as low as −0.22,
where results from traditional FSS using the same simulation data are less conclusive. Hence, the
approach provides a valuable additional tool for mapping out the phase diagram of models afflicted
by strong corrections to scaling.

Keywords: Ising model; frustration; partition function zeros; scaling laws; critical exponents

1. Introduction

Frustrated systems [1] are characterized by interactions that cannot all be satisfied
simultaneously. The resulting internal competition leads to quite interesting critical prop-
erties such as re-entrant phase behavior [2] and non-zero ground state entropy [3,4]. One
of the most well-studied systems in this class is the Ising model with competing first-
and second-neighbor interactions on the square lattice [5–9]. Noting that in the presence
of frustration the lattice geometry is of fundamental importance for the occurrence and
symmetry of ordered phases, it is somewhat surprising that much less is known about the
analogous system on the honeycomb lattice, which only recently started to attract some
attention [10–13]. Depending on the ratio R of the next-nearest-neighbor and nearest-
neighbor interaction strengths, the system has a ferromagnetic ground state forR > −1/4
or a largely degenerate ground state of known energy forR < −1/4 [10]. The understand-
ing of the critical properties forR ≲ −0.2 remains limited. Here, we focus onR > −1/4,
for which the system remains ferromagnetic at zero temperature.

Metastable states are a common feature in frustrated systems and their presence
is a challenge for standard simulation techniques since runs become trapped in local
minima. Particularly difficult are systems with rugged free-energy landscapes [14]. One
contender among generalized-ensemble simulation techniques suitable for such problems
is population annealing (PA) [15,16], which has recently shown its versatility in a range of
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applications [17–19]. PA is particularly well suited for studying such systems with many
competing minima, as the large number of replicas allows sampling many local minima
simultaneously. This is in contrast to its one-replica counterpart, equilibrium simulated
annealing [20], which is much more likely to become trapped in a single local minimum
and, hence, to fail to sample the equilibrium distribution.

Systems with competing interactions often are subject to strong corrections to scaling
(commonly of unknown shape). For the above-mentioned frustrated Ising model on the
square lattice, for example, which has been discussed since the 1970s [5], the study of the
tricritical point required simulations of rather large system sizes, but notwithstanding this
effort certain aspects remain unclear [6–9].

An alternate approach for studying phase transitions revolves around considering
zeros of the partition function in the complex external field and temperature planes, based
on the pioneering work by Lee and Yang [21,22] and by Fisher [23]. Using these zeros allows
one to distinguish between first- and second-order transitions as well as to extract estimates
of their strengths [24–27], and to examine the peculiar properties of a model with special
boundary conditions [28,29]. The cumulative density of zeros and their impact angle onto
the real temperature axis encode the strength of higher-order phase transitions [30–34]. This
can also be used as a medium for deriving scaling relations among logarithmic correction
exponents [35,36]. For a recent discussion along an alternative route, see Ref. [37].

For non-frustrated systems, the scaling of partition function zeros has been shown to
yield quite accurate results for critical exponents, even when using rather small system
sizes [38,39], suggesting that this might also be the case for more complex systems. Previous
work studying partition function zeros for frustrated spin systems includes Refs. [40–43].

Despite some experimental measurements of zeros in complex external magnetic
fields [44–46], the most established approach of studying complex partition function zeros
requires an accurate estimate of the full density of states, which is difficult to obtain both in
experiments as well as in simulations (but see Ref. [47]). For simulations, this commonly
limits the maximum system size that can be studied. More recently, an alternative method
for obtaining the leading partition function zero based on cumulants of the energy and
magnetization distributions has gained some traction [48], thus enabling determinations of
partition function zeros from more easily accessible observables in simulations. We use this
method to analyze the finite-size scaling (FSS) of the zeros for system sizes exceeding those
for which we could determine the full density of states.

For the frustrated Ising model on the honeycomb lattice, initial work using effective
field theory (EFT) [10] suggested the existence of a tricritical point nearR ≈ −0.1. This was
later challenged through a Monte Carlo study [12], showing that the system remains within
the Ising universality class at least down to R = −0.2. Cluster mean-field theory [13]
suggests that the transition may remain of second order down toR = −1/4, but this has
not been verified in the actual model. With this paper, we aim at a better understanding
of the critical properties of this system, particularly close to the special point R = −1/4,
at which the critical temperature vanishes. To this end, we consider the scaling of the
partition function zeros.

2. Materials and Methods
2.1. Model

We study the well-known two-dimensional Ising model, but placed on the honeycomb
lattice and equipped with competing nearest- and next-nearest-neighbor interactions,
resulting in the Hamiltonian

H = −J1 ∑
⟨ij⟩

σiσj − J2 ∑
[ik]

σiσk − h ∑
i

σi ≡ −J1Σ1 − J2Σ2 − hM, (1)

where ⟨ij⟩ and [ik] denote sums over nearest neighbors and next-nearest neighbors, re-
spectively, J1 > 0 is the ferromagnetic nearest-neighbor interaction strength, J2 < 0 is the
competing antiferromagnetic next-nearest-neighbor interaction strength, and h the mag-
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netic field. Σ1 and Σ2 refer to the sums over nearest- and next-nearest-neighbor interactions,
respectively, and M is the (total) magnetization. The quantity relevant for the nature of
the ordered phase and the transition is the ratio R = J2/J1 of couplings. Here, we only
consider the case of R ∈ (−1/4, 0], where the ground state is ferromagnetic [10]. We
study systems of linear lattice size L, which due to the two-atom basis of the honeycomb
lattice contain N = 2L2 spins. Note that all simulations were carried out in the absence
of an external magnetic field. We include the magnetic term here as it is necessary for the
discussion of the Lee–Yang zeros.

2.2. Partition Function Zeros

In terms of the density of states Ω(Σ1, Σ2, M), the partition function at inverse temper-
ature β and external magnetic field h is given by

Z(β, h) = ∑
Σ1

∑
Σ2

∑
M

Ω(Σ1, Σ2, M)eβJ1Σ1+βJ2Σ2+βhM. (2)

We choose both J1 and J2 to be integers, such that for h = 0 the partition function is a
polynomial in x = e−β. For h ̸= 0, on the other hand, the partition function may be
written as a polynomial in e2βh for arbitrary choices of J1 and J2. The complex inverse
temperatures {βk} solving the equation Z(β = βk, h = 0) = 0, i.e., in the absence of an
external magnetic field h, are called Fisher zeros. Once calculated, the Fisher zeros will be
studied as a function of z = x J1 to allow for better comparability of the results for different
values of R = J2/J1. Note that, as is well known, different variables yield very different
visual impressions for the locations of zeros (see, for example, Appendix A). The pair of
zeros closest to the positive real axis approaches (βc, 0) = βc + 0i as L→ ∞. The real and
imaginary parts of these leading zeros β0 usually scale as [49]

ℜ(β0)− βc ∝ L−yt , (3)

and
ℑ(β0) ∝ L−yt , (4)

respectively, with yt being the renormalization group (RG) eigenvalue related to the tem-
perature variable, which is connected to the critical exponent of the correlation length by
yt = 1/ν.

The complex magnetic fields {hk} that solve the equation Z(β, h = hk) = 0 for some
fixed β are the so-called Lee–Yang zeros that lie on the unit circle e2βh = eiφ for the Ising
ferromagnet, implying that all solutions for hk are purely imaginary [21,22]. This circle
theorem has been extended to many more models [50], but it is not universally valid, see,
e.g., Refs. [51,52]. For the Ising model with competing interactions placed on a square
lattice, the circle law was found to apply in the regime with ferromagnetic ground state [53].
As L→ ∞, the Lee–Yang zeros closest to the positive real axis approach zero. At the inverse
critical temperature βc, the imaginary part of the leading zeros h0 scales as [49]

ℑ(h0) ∝ L−yh , (5)

with yh being the RG eigenvalue related to the external magnetic field, which is connected
to the standard critical exponents by yh = (β + γ)/ν.

To numerically estimate partition function zeros, writing β = ℜ(β) + iℑ(β) one notes
that for zero field, h = 0, the Fisher zeros of Z(β, h = 0) are identical to the zeros of

Z(ℜ(β),ℑ(β)) ≡ Z(ℜ(β) + iℑ(β), h = 0)
Z(ℜ(β), h = 0)

= ⟨cos(ℑ(β)H)⟩ℜ(β),h=0 − i⟨sin(ℑ(β)H)⟩ℜ(β),h=0,
(6)

and likewise the Lee–Yang zeros for fixed (real) β might be extracted from
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Zβ(ℜ(h),ℑ(h)) ≡
Z(β,ℜ(h) + iℑ(h))
Z(β,ℜ(h))

= ⟨cos(ℑ(h)M)⟩β,ℜ(h) − i⟨sin(ℑ(h)M)⟩β,ℜ(h).
(7)

While the evaluation of (6) and (7) and a systematic search for zeros requires the avail-
ability of the density of states Ω for reweighting [39,54–56], more recently a computationally
lighter method based on cumulants of thermodynamic observables Φ(q), i.e.,

⟨⟨Φn(q)⟩⟩ = ∂n

∂qn lnZ(q) (8)

has been suggested [38,48,57–59]. Here, the notation Φ(q) refers to the thermodynamic
observables H and M as a function of their control parameters q = −β and q = βh,
respectively, unifying the discussion of Fisher and Lee–Yang zeros. The method relies on the
fact that the partition function can be factorized in a regular (non-zero) part Z̃(q) = Z(0)ecq

for some constant c and the product of its complex roots in q, i.e.,

Z(q) = Z̃(q)∏
k
(1− q/qk). (9)

Note that by Equation (2) Z(q) is real for real q, and that thus the roots qk in (9) appear in
complex conjugate pairs. Plugging (9) into (8) yields the expression

⟨⟨Φn(q)⟩⟩ = −∑
k

(n− 1)!
(qk − q)n , n > 1 (10)

for the cumulants. The key point of the method is that the contribution of non-leading zeros
in the expression above is suppressed by powers of n for the n-th order cumulant. Thus,
one neglects the non-leading zeros, which allows the calculation of the leading partition
function zeros using only the first few cumulants of the energy and magnetization, ⟨⟨Hn⟩⟩
and ⟨⟨Mn⟩⟩, and hence does not require knowledge of Ω. Cumulants can be calculated from
the central moments, ⟨Φn⟩c =

〈
(Φ− ⟨Φ⟩)n〉. The first four cumulants are given by

⟨⟨Φ⟩⟩ = ⟨Φ⟩, ⟨⟨Φ2⟩⟩ = ⟨Φ2⟩c, ⟨⟨Φ3⟩⟩ = ⟨Φ3⟩c, ⟨⟨Φ4⟩⟩ = ⟨Φ4⟩c − 3
(
⟨Φ2⟩c

)2
. (11)

Relations for higher-order cumulants can be found using computer algebra systems. (We
use the MATHEMATICA function MomentConvert to obtain the relations up to the 20-th
cumulant. The first ten cumulants are listed in Ref. [60].) Within this framework, the leading
zeros q0 can be extracted in a vector-matrix notation from [48]

(
2 ℜ(q0 − q)
|q0 − q|2

)
≈

1 −µ
(+)
n
n

1 − µ
(+)
n+1

n + 1


−1(

(n− 1)µ(−)
n

n µ
(−)
n+1

)
, (12)

where n is the approximation order, and µ
(±)
n denotes the ratio of two cumulants of

consecutive orders, i.e., µ
(±)
n ≡ ⟨⟨Φn±1⟩⟩/⟨⟨Φn⟩⟩. (Φ, q) = (E,−β) corresponds to Fisher

zeros, and (Φ, q) = (M, βh) to Lee–Yang zeros. Since odd cumulants of M vanish for h = 0,
when setting n = 2k the expression for the Lee–Yang zeros simplifies to [39,59]

ℑ(h0) ≈ ±
1
β

√
2k(2k + 1)

∣∣∣∣ ⟨⟨M2k(0)⟩⟩
⟨⟨M2(k+1)(0)⟩⟩

∣∣∣∣. (13)
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2.3. Population Annealing

Population annealing (PA) [15,16] is a simulation scheme designed for parallel calcula-
tions for systems with complex free-energy landscapes in which the state space is sampled
by a population of replicas that are cooled down collectively. It consists of alternating
resampling and spin-update steps. As the temperature is lowered, the population is resam-
pled according to the Boltzmann distribution at the new temperature [61]. Spin updates
then help to equilibrate the replicas at this temperature, and to increase the diversity of the
population [62]. The implementation of PA as used here can be summarized as follows:

1. Initialize the population by drawing R0 = R random spin configurations correspond-
ing to the initial inverse temperature βPA

0 = 0.
2. Set the iteration counter i← 0.
3. Determine the next inverse temperature βPA

i+1 such that the energy histogram overlap
between βPA

i and βPA
i+1, given by [63]

α(βPA
i , βPA

i+1) =
1
Ri

Ri

∑
j=1

min

(
1,

Re−(βPA
i+1−βPA

i )Ej

∑Ri
k=1 e−(βPA

i+1−βPA
i )Ek

)
, (14)

is approximately equal to the target value of α∗, where Ej refers to the current energy
of replica j.

4. Increment i by 1.
5. Resample the replicas according to their relative Boltzmann weights, that is, make

on average

τ(Ej) =
Re−(βPA

i+1−βPA
i )Ej

∑Ri
k=1 e−(βPA

i+1−βPA
i )Ek

(15)

copies of replica j with energy Ej.
6. Carry out Metropolis updates on the replicas until the effective population size Reff

(see [62] for definition and discussion) exceeds the threshold value of R∗ = ρ∗R.
7. Calculate estimates for observables O as the population averages ∑jOj/Ri, where

Oj is the value of the observable for the j-th replica. Note that we calculate central
moments of the energy directly during the simulation after calculating the average
energy, because using raw moments to calculate higher-order central moments and
cumulants leads to a complete loss of numeric precision in the latter.

8. Unless the lowest temperature of interest is reached, go to step 3.

Some comments are in order at this point. The above implementation contains numer-
ous parameters of relevance to the performance of the algorithm, namely, the population
size R, the target energy distribution overlap α∗, and the sweep schedule given by the
threshold value ρ∗ for the relative effective population size. These have been (resp. will be)
discussed elsewhere [61,62,64], and here we choose R = 20,000 throughout, α∗ is set to at
least 80%, in some cases 90%, and ρ∗ ≥ 90%. There are in fact many possibilities of how
the resampling step can be realized. Here, we use the so-called nearest-integer resampling
which has been shown to lead to optimal results in many scenarios [61]. For the spin
updates we employ the Metropolis method implemented on a GPU, drawing on a domain
decomposition [63] into four sublattices, adapting and extending the publicly available
code of Ref. [63]. For small system sizes, we obtain an estimate for the density of states by
using multi-histogram reweighting, also implemented in the source code of Ref. [63].

3. Results
3.1. Solving for all Fisher Zeros in the Complex Temperature Plane

For finite systems, the partition function for h = 0 is a polynomial of finite order in
x = e−β (for suitable choices of J1 and J2). In principle, once the density of states Ω(E)
is known one can solve for all partition function zeros numerically. Due to the presence
of both J1Σ1 and J2Σ2 in the Hamiltonian, there are more than the usual O(N) distinct
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energy levels, namely up to O(N2) levels, where N = 2L2 is the number of spins in the
honeycomb system. Thus, it is only feasible to calculate all partition function zeros for very
small system sizes.

This is illustrated in Figure 1, where all Fisher zeros of a 32-spin system (L = 4)
with periodic boundary conditions for different values ofR are depicted. To compute the
density of states we used exact enumeration of all possible 232 spin configurations. In the
absence of next-nearest-neighbor interactions (i.e., for the standard ferromagnetic Ising
case), the model can be solved analytically for L→ ∞; see Appendix A for a comparison of
the partition function zeros for L = 4 with the exact solution in the thermodynamic limit.
ForR = 0, the partition function is an even polynomial in z = x J1 , and hence symmetric in
z. This symmetry is broken by the introduction of the next-nearest-neighbor interactions,
which is reflected in the asymmetry with respect to the ordinate axis in Figure 1, that
becomes stronger with increasing | R | (left to right). Also note that the number of zeros for
the finite system size is much larger than for R = 0. This is due to a smaller number of
distinct energy levels forR = 0, or in other words, the larger degeneracy of the individual
energy levels. For L = 4, the Fisher zeros at z = ±i for R = 0 each split into 16 distinct
ones when | R | is increased, and spread out as | R | is increased further. For R = −0.1
this is well seen through the dense set of zeros near z = ±i. For a better visual impression
of how the Fisher zeros move asR is changed, we refer to the Supplementary Materials,
which contain an animation (video) illustrating the motion of Fisher zeros asR is varied
from 0 to −1, illustrating the splitting of the zero located at z = ±i forR = 0 very clearly.

(a) (b) (c)
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Figure 1. Fisher zeros in the (transformed) complex temperature z = e−βJ1 plane for L = 4 and
(a)R = −0.1, (b)R = −0.2, and (c)R = −0.22. The red circles highlight the Fisher zeros closest to
the positive real axis. Note that MATHEMATICA fails to find some zeros close to the real axis, which
becomes apparent as some zeros that are visible forR = −0.1 and −0.2 are absent forR = −0.22.

From earlier studies [10,12], it is known that the critical temperature in this model
approaches zero asR goes to −1/4. This is reflected in Figure 1 by the leading Fisher zero
(red circle) moving closer to the origin in this limit. Due to the small system size, the leading
Fisher zero for R = −0.22 is very close to the imaginary axis. In fact, for R ≲ −0.222,
the imaginary part of the leading Fisher zero in the β-plane, ℑ(β0), exceeds π/2. Thus,
in the z-plane the zero may lie in the region of negative real values for smaller values ofR.
AsR approaches −1/4, both the real and imaginary part of β0 go to infinity. Thus, in the
z-plane, the Fisher zero rotates around the origin asR goes to −1/4. Since the imaginary
part of β0 vanishes with increasing L, we understand this effect as a peculiar finite-size
effect and expect it not to be relevant in the thermodynamic limit.

3.2. Determining the Leading Fisher Zero Directly and by the Cumulant Method

In the following, we verify the efficacy of the cumulant method developed by Flindt
and Garrahan [48] by comparing its results to the estimates from reweighting for system
sizes for which we obtained the density of states. As we were unable to calculate all
partition function zeros for L > 4, we fall back to obtaining the value of the leading Fisher
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zero used for comparison by numerically reweighting Z(ℜ(β),ℑ(β)). Except for L = 4,
where exact enumeration was used, we estimate the density of states Ω(Σ1, Σ2) by using
multi-histogram reweighting (MHR) of our PA data [63]. (Note that we only measured the
two-dimensional (energetic) density of states. Therefore, we do not have access to magnetic
quantities and the Lee–Yang zeros.)

The top row of Figure 2 shows the absolute value of the partition function Z(ℜ(β),ℑ(β))
in the complex β-plane as obtained from Equation (6) and for different values ofR, zoomed-
in and centered around the leading Fisher zero for L = 4 with positive imaginary part
(using the same data as above). The open black circles denote the respective Fisher zero
β
(d)
0 found using the Levenberg–Marquardt (LM) algorithm [65,66], with an initial guess for

β
(d)
0 close to the root. (We use SCIPY’s optimize.root function to find the zeros with the

parameter method=’lm’, corresponding to the Levenberg-Marquardt algorithm.) In the
following, we refer to this approach using the LM algorithm as the “direct method”. Note
the added superscript (d) for the value of the leading Fisher zero obtained with this method.
A commonly used alternative approach is to use one-dimensional root finding to determine
the zeros of the real and imaginary parts of Equations (6) or (7) independently over a range
of complex β’s or h’s, respectively, and then, to find their intersection, a method used, e.g.,
in Refs. [39,54–56].
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Figure 2. The top row shows heat maps of |Z(ℜ(β),ℑ(β))| for complex β as obtained from
Equation (6) for R ∈ {−0.1,−0.2,−0.22}, computed by exact enumeration for L = 4. The lead-
ing Fisher zero calculated by the direct method is denoted by an open black circle. The bottom row
shows the differences ∆ℜ(β0) and ∆ℑ(β0) (see text for definitions), comparing the direct method
with the cumulant method.

For the cumulant method, when the n-th order cumulants are evaluated at β = ℜ(β(d)0 )
the estimate for ℜ(β − β0) goes to zero with increasing n and the approximation of

|β − β0|2 approaches ℑ(β
(d)
0 )

2
. In principle, one can use any simulation point β and

obtain estimates for the location of the Fisher zero. However, most precise results are
found for β ≈ ℜ(β0). Thus, we can consider ∆ℜ(β0) ≡ ℜ(β − β0)|n,β=ℜ(β

(d)
0 )

and

∆ℑ(β0) ≡
√
|β− β0|2

∣∣
n,β=ℜ(β

(d)
0 )
− ℑ(β

(d)
0 ) to probe the rate of convergence in n. The

bottom panel shows the absolute values |∆ℜ(β0)| and |∆ℑ(β0)| of the differences as a
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function of n, which appear to decay exponentially. This observation is in line with the fact
that the contributions of sub-leading partition function zeros are suppressed with power n,
see Equation (10).

Next, we repeat the same analysis with data for the density of states obtained by MHR
of PA data with system size L = 16. For each value of R we carried out an independent
simulation. Although reweighting in J2 is in principle possible, the reweighting range
is rather limited. The results of this exercise are shown in Figure 3, and they are found
to be qualitatively quite similar to the previous case. As is to be expected, the leading
Fisher zero is closer to the real axis as compared to L = 4. As before, the cumulants are
evaluated at β = ℜ(β

(d)
0 ) from the direct method, which is possible thanks to the estimate

of the density of states Ω from MHR. In particular, the exponential decay of the differences
between the cumulant and direct method is more clearly visible in this case. Note that
the bottom row only shows the systematic deviation of the two methods when using the
same data for Ω(Σ1, Σ2) (subject to statistical errors), and not the actual error for β0. For
an estimate of the statistical errors encountered in the simulation, see the error bars in
Figure A2. This demonstrates that the cumulant method is a viable replacement for the
direct method whenever the statistical error exceeds the systematic deviation shown above
(which it typically does). However, it does not say anything about the actual accuracy of
the obtained results. Also, note that even on the logarithmic scale, the difference decays
monotonously and no noise is visible even when using higher-order cumulants. This is
because despite the fact that higher-order cumulants are noisy, the fluctuations in their
ratios do not increase noticeably with n, which is due to the cross-correlation between
the terms.
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Figure 3. Same as Figure 2 for L = 16, but using PA simulation data instead of exact enumeration.

3.3. Determining the Leading Lee–Yang Zero Directly and by the Cumulant Method

We now turn to an analysis of the Lee–Yang zeros. We consider the partition function in
the complex-field plane at our best estimate for the infinite-volume critical temperature for
different values ofR (see Section 3.4 for details). Analogous to the Fisher zeros discussed
in the previous section, Lee–Yang zeros are obtained using the direct method (utilizing the
LM algorithm). As their calculation requires the density of states Ω(Σ1, Σ2, M), we only
compute them for L = 4.
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Similar to Figure 2, the top panel of Figure 4 shows the absolute value of the partition
function in the complex field plane at the infinite-volume inverse critical temperature
βc, i.e., |Zβc(ℜ(h),ℑ(h))|. The found zeros are consistent with being purely imaginary,
suggesting that the Lee–Yang circle theorem may also hold for the model considered here.
(Note that we are unaware of any rigorous proof of the circle theorem for the model at
hand.) We again also considered the alternative approach provided by the cumulant
method, and the bottom panel of Figure 4 depicts the deviation of the estimate of the
cumulant method from the zero determined via the direct method as a function of n. As
was the case for the Fisher zeros, the deviation vanishes exponentially in n. Note that the
range of the real part of the external magnetic field is the same in all three panels. For
smaller values ofR, the minimum of |Zβc(h)| becomes broader, making it more difficult to
find the root numerically. The imaginary part of the leading Lee–Yang zero vanishes asR
approaches −1/4.
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Figure 4. The top row shows |Zβc (ℜ(h),ℑ(h))| for complex h, as obtained from Equation (7) for
R ∈ {−0.1,−0.2,−0.22}, calculated by exact enumeration for L = 4 at βc. For βc we used our best
estimate, see Section 3.4. The leading Lee–Yang zero is denoted by an open white circle. The bottom
row shows the difference in ℑ(h0) for the approximation given by Equation (13) of order n and the
directly obtained value.

3.4. Comparison of Standard FSS and Scaling of Partition Function Zeros

One recently proposed advantage of using the partition function zeros to obtain critical
exponents is that already rather small system sizes may yield quite accurate estimates for
the exponents [39]. In the following, we present tables for different values ofR and different
fit intervals from Lmin to Lmax, thus clearly demonstrating for which ranges of system sizes
reliable FSS fits can be performed. We consider the system sizes L ∈ {8, 16, 24, 32, 48, 64, 88}
and values of R equal to −0.1, −0.2, −0.21, and −0.22. As the results for R = −0.21 are
analogous to the other values ofR, they are only included in the Supplementary Materials,
and not presented in the main text. For every system size L and for every value ofR, ten
independent PA runs were carried out in order to improve statistics and to obtain error
bars. The first run determined the temperature set for the remaining runs. In principle,
the energy histogram overlap defines the temperature set uniquely. However, the actually
determined temperatures by PA are subject to statistical fluctuations. Thus, to avoid every
realization having its own temperatures, the first run is used to fix the temperature set.
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The same simulation data were used for the comparison of standard FSS and the scaling of
partition function zeros obtained via the cumulant method using up to the 20-th cumulant
(corresponding to n = 18 in Equation (12) for Fisher zeros, and k = 9 in Equation (13) for
Lee–Yang zeros). As shown above, we did not observe any loss in numeric precision using
higher-order cumulants. Therefore, we use the largest cumulant that we measured; see also
Appendix B.

3.4.1. Scaling of Fisher Zeros

Table 1 summarizes the FSS results forR = −0.1, −0.2, and −0.22 using the leading
Fisher zero as well as the logarithmic derivative of the magnetization,

dln|m| ≡ ∂

∂β
ln⟨|M|⟩ = ⟨|M|H⟩⟨|M|⟩ − ⟨H⟩, (16)

whose maximum follows the FSS relation dln|m|max(L) ∝ Lyt [67]. As the precise inverse
temperature at whichℜ(β− β0) is zero is not in general contained in the annealing schedule
of PA, we first determine the zero crossing in the estimate for ℜ(β− β0) with positive slope
closest to the location of the local maximum of the second energy cumulant (ignoring
the β = 0 maximum). Next, we determine the β for which the linear interpolation of
ℜ(β− β0) of Equation (12) between the two closest inverse temperatures is zero. ℑ(β0)
is also obtained through linear interpolation to the same β which we found to be more
stable than to evaluate ℜ(β0) and ℑ(β0) directly using Equation (12). This is subsequently
used for FSS. Details from all fits yielding estimates for yt can be found in Section 2.1
of the Supplementary Materials. The expected exponent is the Onsager value, yt = 1.
The estimates yF

t and ydln|m|
t for yt resulting from both methods are close to the expected

value for the considered ranges of system sizes for allR, albeit not always within error bars.
ForR = −0.1 it comes as a surprise that the values from standard FSS using dln|m|

are closer to 1 and appear to have weaker corrections to scaling. Specifically, the value
obtained for ydln|m|

t is within 0.5% of the expected value for all fit ranges, whereas the
value for yF

t differs by as much as 3% when using the fitting range 8–24 for L. While when
Lmin = 8 the value for yt using the leading Fisher zero is far below 1, it is consistent with
1 for larger Lmin, suggestive of the differing value for smaller system sizes being due to
stronger corrections to scaling.

In contrast, for R = −0.2 for almost any (fixed) fitting range the two estimates
are compatible with each other within error bars, and the error bars are comparable in
magnitude. Most of the yt estimates fall well below the expected value yt = 1, and increase
with both Lmin and Lmax, being compatible with 1 only for fitting ranges limited to the
largest system sizes studied here. This effective variation in the exponent with L is also
reflected in the poor quality of fit: In most ranges [Lmin, Lmax] the Q value falls below
0.1 [68], where Q refers to the probability of drawing a χ2 from the χ2 distribution that is
even larger than the value calculated from the fit. Unusually small values for Q correspond
to poor quality of fit.

ForR = −0.22, the estimates for yt are even further below the Onsager value of yt = 1,
and again increase with Lmin and Lmax, suggestive of the presence of strong corrections to
scaling. Only in the range [48, 88] is the result within error bars of the Onsager value. Here
too, the effectively changing exponent is reflected in poor fit qualities. Differently from the
previous cases, however, the value for yt from the Fisher zeros is consistently closer to the
expected value than the value from regular FSS, suggesting that corrections to scaling are
weaker for the location of the Fisher zeros in this case. The overall worse fit quality for
dln|m| is also in agreement with stronger correction terms.
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Table 1. Estimates for yt from FSS fits using the imaginary part of the leading Fisher zero as well as
dln|m| for different Lmin and Lmax, and usingR = −0.1, −0.2, and −0.22.

Lmax 24 32 48 64 88
Lmin

R = −0.1

8
yF

t = 0.9668(61)
ydln|m|

t = 0.9957(24)
yF

t = 0.9667(48)
ydln|m|

t = 0.9943(17)
yF

t = 0.9796(31) †

ydln|m|
t = 0.9941(15)

yF
t = 0.9817(29) †

ydln|m|
t = 0.9939(13)

yF
t = 0.9829(29) †

ydln|m|
t = 0.9941(11)

16 –
yF

t = 0.972(15)
ydln|m|

t = 0.9867(96)
yF

t = 1.0001(79) †

ydln|m|
t = 0.9908(51)

yF
t = 1.0026(70)

ydln|m|
t = 0.9916(35)

yF
t = 1.0052(68) †

ydln|m|
t = 0.9932(23)

24 – –
yF

t = 1.017(13)
ydln|m|

t = 0.9908(51)
yF

t = 1.018(11)
ydln|m|

t = 0.9916(35)
yF

t = 1.022(11)
ydln|m|

t = 0.9933(23)

32 – – –
yF

t = 1.042(21)
ydln|m|

t = 0.9935(50)
yF

t = 1.049(19)
ydln|m|

t = 0.9948(31)

48 – – – –
yF

t = 1.048(38)
ydln|m|

t = 0.9959(65)

R = −0.2

8
yF

t = 0.9215(35)
ydln|m|

t = 0.9211(27) †
yF

t = 0.9263(31) †

ydln|m|
t = 0.9284(18) †

yF
t = 0.9369(26) †

ydln|m|
t = 0.9344(15) †

yF
t = 0.9400(23) †

ydln|m|
t = 0.9380(14) †

yF
t = 0.9453(21) †

ydln|m|
t = 0.9484(10) †

16 –
yF

t = 0.9500(86)
ydln|m|

t = 0.9493(47)
yF

t = 0.9663(54) †

ydln|m|
t = 0.9581(34) †

yF
t = 0.9639(42) †

ydln|m|
t = 0.9625(29) †

yF
t = 0.9702(37) †

ydln|m|
t = 0.9707(19) †

24 – –
yF

t = 0.994(12)
ydln|m|

t = 0.9694(64) †
yF

t = 0.9780(83)
ydln|m|

t = 0.9737(48)
yF

t = 0.9872(68) †

ydln|m|
t = 0.9788(26)

32 – – –
yF

t = 0.968(15) †

ydln|m|
t = 0.9829(65)

yF
t = 0.988(11) †

ydln|m|
t = 0.9833(32)

48 – – – –
yF

t = 0.990(20) †

ydln|m|
t = 0.9838(67)

R = −0.22

8
yF

t = 0.9328(30) †

ydln|m|
t = 0.8781(25) †

yF
t = 0.9356(23) †

ydln|m|
t = 0.8907(19) †

yF
t = 0.9364(21) †

ydln|m|
t = 0.9019(15) †

yF
t = 0.9410(18) †

ydln|m|
t = 0.9112(13) †

yF
t = 0.9461(15) †

ydln|m|
t = 0.9167(12) †

16 –
yF

t = 0.9525(76)
ydln|m|

t = 0.9302(42)
yF

t = 0.9513(63)
ydln|m|

t = 0.9365(28)
yF

t = 0.9588(45)
ydln|m|

t = 0.9431(22) †
yF

t = 0.9644(32)
ydln|m|

t = 0.9484(19) †

24 – –
yF

t = 0.948(13)
ydln|m|

t = 0.9437(54)
yF

t = 0.9634(71)
ydln|m|

t = 0.9525(36) †
yF

t = 0.9697(46)
ydln|m|

t = 0.9600(30) †

32 – – –
yF

t = 0.971(11)
ydln|m|

t = 0.9612(53)
yF

t = 0.9766(68)
ydln|m|

t = 0.9702(42) †

48 – – – –
yF

t = 0.995(16)
ydln|m|

t = 0.9905(84)
† Q value below 0.1.

3.4.2. Scaling of Lee–Yang Zeros

In the following, we obtain yh from the scaling behavior (see Equation (5)) of the
leading Lee–Yang zero at the (fixed) inverse temperature βc, as well as from the value of
the magnetic susceptibility χ at βc, which follows the scaling relation

χL(βc) = L−Dβc⟨M2⟩βc ∝ L−D+2yh = Lγ/ν, (17)

with D being the spatial dimension. In principle, one may also use the pseudo-critical
points of the magnetic susceptibility with subtraction and its peak heights, which follow the
same scaling relation. However, as we use the critical temperature for the Lee–Yang zeros,
this would result in an unfair comparison and the values from the magnetic susceptibility
by design would be subject to stronger corrections to scaling.
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We consider the Lee–Yang zeros at our estimate for the inverse critical temperature βc
obtained from the scaling of the real part of the Fisher zeros for the different values ofR.
This estimate is found by applying the fit ansatz ℜ(β0(L)) = βc − aL−yt − bL−2yt , allowing
for a first-order correction term and assuming yt = 1. Using the full range of system sizes,
i.e., L = 8, . . . , 88, we obtain βc J1 = 1.02350(32), 2.65740(54), 3.25721(42), 4.27017(59) for
R = −0.1, −0.2, −0.21, and −0.22, respectively (cf. Supplementary Tables S9–S12). The
Lee–Yang zeros ℑ(h0) and the susceptibility χL together with their statistical errors are
then evaluated at this value for βc. Note that as the critical temperature was calculated a
posteriori, we have no data for the cumulants at βc. In order to estimate the value of the
cumulants at βc, we use Lagrange interpolation between the four inverse temperatures
closest to βc, potentially resulting in a small systematic error. As all realizations use
the same temperature set, the effect of this is not accounted for in the quoted error bars.
Next, one carries out the FSS analysis on the calculated values for the Lee–Yang zeros
and the susceptibility at the obtained βc. In this process the statistical errors in ℑ(h0)
and χL are correctly reflected in the statistical error of the critical exponent yh, whereas
the uncertainty in βc is not accounted for. To estimate the influence of the error of βc on
the estimate for yh, one may repeat this analysis at βc − ϵ(βc) and βc + ϵ(βc), with ϵ(βc)

corresponding to the quoted error bars. This yields estimates y(−)h and y(+)
h , thus giving rise

to a second contribution |y(+)
h − y(−)h |/2 to the error of yh. Alternatively, to combine both

error contributions in the quoted error bars, we carry out jackknifing [69] over the whole
FSS procedure. Specifically, we use ten jackknife blocks (each containing nine out of ten PA
simulation runs), for which we then perform the entire analysis, resulting in slightly varying
values for the Fisher zeros and the inverse critical temperatures. The Lee–Yang zeros and the
magnetic susceptibilities are analyzed at the respective βc of each jackknife block, and finally,
result in different estimates for the exponent yh. The final estimates of yh quoted in Table 2
and Supplementary Tables S13–S20 are then the plain averages of the jackknife blocks.Their
standard errors are calculated via the usual rescaled variance of the jackknife blocks, which
accounts for their trivial correlation [69,70]. For further details including results for all
fitting parameters, see Sections S2.2 and S2.3 of the Supplementary Materials. We have
checked that the jackknife estimates for βc J1 (βc J1 = 1.02351(22), 2.65740(68), 3.25722(84),
and 4.27017(48)) are in very good agreement with our aforementioned final values.

The expected value for yh is the D = 2 Ising value yh = 1.875. Table 2 summarizes the
FSS results using the leading Lee–Yang zero and the magnetic susceptibility forR = −0.1,
−0.2, and −0.22. As before, the results are affected by corrections to scaling reflected in
effectively varying exponents that approach the expected value as Lmin and Lmax increase.
Both methods yield values for yh well compatible with the expected exponent of 1.875.

ForR = −0.1, the estimate yLY
h for yh from the scaling of the Lee–Yang zeros even on

the smallest range of system sizes, i.e., L ∈ {8, 16, 24}, is within two error bars of 1.875,
as opposed to the estimate yχ

h from the magnetic susceptibility, which is far outside the
error margin. This indicates stronger corrections to scaling for the magnetic susceptibility,
which is also reflected in the overall poorer quality-of-fit value Q. Despite the big difference
when including the value for L = 8, for Lmin > 8 the value for yh from the Lee–Yang zeros
is only marginally closer to the Ising value as compared to the results from the scaling of
the magnetic susceptibility.

Also, for R = −0.2 the difference between the methods shows most clearly when
including the value for L = 8. Here, the estimate from the partition function zeros is much
closer to the expected one, albeit still not within error bars. When choosing Lmin = 16,
the value from the Lee–Yang zeros is always within at most two error bars of the expected
value, which is not the case for the value from the magnetic susceptibility. However, this
observation may not be significant as both values are within the error bars. For L ≥ 24, both
methods yield values compatible with each other and with 1.875. Similarly, forR = −0.22
the Lee–Yang value for yh is much closer to 1.875 (but again not within error bars) than the
magnetic susceptibility one when including L = 8. When excluding the smallest system
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size, both methods yield results compatible with the Ising exponent, and both methods
appear to perform equally well.

Table 2. Jackknife estimates at βc (see text) for yh from FSS fits using the leading Lee–Yang zero as
well as from the value of the magnetic susceptibility χL at βc for different Lmin and Lmax, and using
R = −0.1, −0.2, and −0.22.

Lmax 24 32 48 64 88
Lmin

R = −0.1

8 yLY
h = 1.87629(97)

yχ
h = 1.87813(86)

yLY
h = 1.87564(69)

yχ
h = 1.87730(57) †

yLY
h = 1.8756(13)

yχ
h = 1.8769(11) †

yLY
h = 1.8754(20)

yχ
h = 1.8764(17) †

yLY
h = 1.8754(25)

yχ
h = 1.8763(21) †

16 – yLY
h = 1.8747(13)

yχ
h = 1.8755(11) †

yLY
h = 1.8751(23)

yχ
h = 1.8757(20)

yLY
h = 1.8750(30)

yχ
h = 1.8754(26)

yLY
h = 1.8751(35)

yχ
h = 1.8755(31)

24 – – yLY
h = 1.8745(38)

yχ
h = 1.8751(34)

yLY
h = 1.8747(42)

yχ
h = 1.8750(37)

yLY
h = 1.8750(46)

yχ
h = 1.8753(40)

32 – – – yLY
h = 1.8758(49)

yχ
h = 1.8759(42)

yLY
h = 1.8757(50)

yχ
h = 1.8759(43)

48 – – – – yLY
h = 1.8752(49)

yχ
h = 1.8754(43)

R = −0.2

8 yLY
h = 1.8780(13)

yχ
h = 1.8828(13) †

yLY
h = 1.8772(16)

yχ
h = 1.8813(14) †

yLY
h = 1.8771(18)

yχ
h = 1.8805(16) †

yLY
h = 1.8769(20)

yχ
h = 1.8801(17) †

yLY
h = 1.8767(30) †

yχ
h = 1.8789(28) †

16 – yLY
h = 1.8750(26)

yχ
h = 1.8767(23)

yLY
h = 1.8757(28)

yχ
h = 1.8767(24)

yLY
h = 1.8757(32)

yχ
h = 1.8765(28)

yLY
h = 1.8759(44)

yχ
h = 1.8763(38)

24 – – yLY
h = 1.8759(35)

yχ
h = 1.8761(30)

yLY
h = 1.8757(38)

yχ
h = 1.8759(33)

yLY
h = 1.8760(48)

yχ
h = 1.8761(42)

32 – – – yLY
h = 1.8765(41)

yχ
h = 1.8765(36)

yLY
h = 1.8763(52)

yχ
h = 1.8763(46)

48 – – – – yLY
h = 1.8758(66)

yχ
h = 1.8759(57)

R = −0.22

8 yLY
h = 1.88294(89)

yχ
h = 1.88778(65) †

yLY
h = 1.8818(11) †

yχ
h = 1.8860(11) †

yLY
h = 1.8808(12) †

yχ
h = 1.8845(12) †

yLY
h = 1.8804(10) †

yχ
h = 1.88300(95) †

yLY
h = 1.8803(10) †

yχ
h = 1.88288(95) †

16 – yLY
h = 1.8777(22)

yχ
h = 1.8791(19)

yLY
h = 1.8766(16)

yχ
h = 1.8777(16)

yLY
h = 1.8781(14)

yχ
h = 1.8786(13)

yLY
h = 1.8781(13)

yχ
h = 1.8786(12)

24 – – yLY
h = 1.8752(17)

yχ
h = 1.8758(16)

yLY
h = 1.8779(18)

yχ
h = 1.8781(15)

yLY
h = 1.8780(17)

yχ
h = 1.8782(15)

32 – – – yLY
h = 1.8792(23)

yχ
h = 1.8792(19)

yLY
h = 1.8793(21)

yχ
h = 1.8792(18)

48 – – – – yLY
h = 1.8827(36)

yχ
h = 1.8817(30)

† Q value below 0.1.

4. Conclusions

We have studied the Fisher and Lee–Yang zeros for the frustrated J1–J2 Ising model on
the honeycomb lattice. The partition function zeros are obtained using a recently suggested
cumulant method [38,48,57,58] that does not require knowledge of the density of states Ω.
For small systems where Ω was available, we compared the values for the leading Fisher
and Lee–Yang zeros from the cumulant method against the directly obtained estimates
and observed only small deviations that vanish exponentially in the cumulant order n,
regardless of the value ofR. For larger systems, we also saw an exponential convergence
of the cumulant estimates to their asymptotic values when evaluating the cumulants at β
close to ℜ(β0).
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We compared FSS using the location of the leading partition function zeros with a
traditional FSS protocol. Both approaches indicate that the model remains in the Ising
universality class for all studied values of R > −1/4. For the temperature exponent yt,
our numerical results do not favor one method over the other. Instead, both approaches
seem to be subject to non-trivial corrections to scaling, such that dependent onR one or
the other approach appears preferable. ForR = −0.1 conventional FSS shows practically
no signs of corrections to scaling even for very small systems, whereas the values obtained
for yt from the partition function zeros have a clear system-size dependence. On the
other hand, for values of R closer to −1/4, conventional FSS is subject to very strong
corrections to scaling, whereas the values obtained using the partition function zeros show
only slightly stronger corrections as compared to R = −0.1. Therefore, our data for the
partition function zeros for R = −0.22 convincingly indicate that the system remains in
the Ising universality class, whereas the results from traditional FSS alone are much less
conclusive. The field exponent yh, as obtained from the Lee–Yang zeros, in most cases
was marginally closer to the expected value than the estimate derived from the magnetic
susceptibility, although only when including the smallest system size of L = 8 the former
approach performed significantly better than the latter.

Thus, based on our results, studying the critical behavior using the partition function
zeros does not in general promise to yield results less afflicted by scaling corrections but,
as expected, in different regimes one or the other approach might have an edge in this
respect. Both techniques (as well as other scaling paradigms) can hence be used with good
success in a complementary fashion.
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Appendix A. Fisher Zeros for R = 0

As a consistency check, we carried out the partition function zero analysis forR = 0 in
the complex temperature plane, where exact Fisher zeros are known in the thermodynamic
limit [71,72]. The Fisher zeros of the field-free Ising model on the honeycomb lattice without
next-nearest-neighbor interactions lie on the partial circle z2 = eiφ for φ ∈ [π/3, 5π/3],
and the heart-shape-like curve given by [72][

ℑ(z2)
]2

= 1 + 2ℜ(z2)−
[
ℜ(z2)

]2
±
√

8ℜ(z2). (A1)

(a) (b)
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Figure A1. Fisher zeros in the complex temperature planes (a) z2 = e−2βJ1 and (b) z = e−βJ1 for
R = 0. Points denote our data for L = 4 obtained by exact enumeration. The solid lines are the exact
zeros for L→ ∞ [71,72].

Figure A1 shows the Fisher zeros for L = 4 (points) and for L → ∞ (solid lines).
Despite the rather small system size, both appear to be already somewhat compatible,
with the closest zero for the finite system size, of course, not being located on the positive
real axis. As in the absence of next-nearest-neighbor interactions, the partition function is
an even polynomial in z, the natural variable to consider the Fisher zeros is z2 [see panel (a)].
When using z as variable, the z→ −z symmetry is visible [see panel (b)], which was absent
forR ̸= 0; cf. Figure 1.

Appendix B. Convergence of the Cumulant Method for Larger System Sizes

We have tested the convergence of the cumulant method for small system sizes
extensively to assure its convergence. For larger system sizes we did not have access to the
density of states. To test the convergence for these larger system sizes, we therefore consider
the predicted value of the partition function zero as a function of cumulant order n.

Figure A2 shows the estimated location of the Fisher zero using the cumulant method.
The β0 is found by determining the zero crossing of ℜ(β− β0), and the imaginary part
is calculated using the equation for |β− β0|2 at that value for β. For all system sizes and
for all considered choices of R, the estimated value from the cumulant method quickly
approaches a constant with increasing n.
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Figure A2. Real and imaginary parts of the Fisher zeros β0 obtained through the cumulant method
as a function of n [see Equation (12)] for different L. In (a,b)R = −0.1, and in (c,d)R = −0.2.

Similarly, in Figure A3 we show the values for the complex field h0 of the Lee–Yang
zeros at βc estimated by the cumulant method for the different values ofR as a function
of n. These also converge quickly. Note that even on the logarithmic scale of Figure A3,
error bars do not appear to grow significantly as the order of cumulants is increased. As
mentioned above, we attribute this to the fact that despite increasing statistical errors of
the individual cumulants, their ratios show only little statistical fluctuation due to the
cross-correlation between the terms.
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Figure A3. Imaginary part of the Lee–Yang zeros h0 for different system sizes L and coupling
strengthsR. (a)R = −0.1, (b)R = −0.2, (c)R = −0.21, and (d)R = −0.22.
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